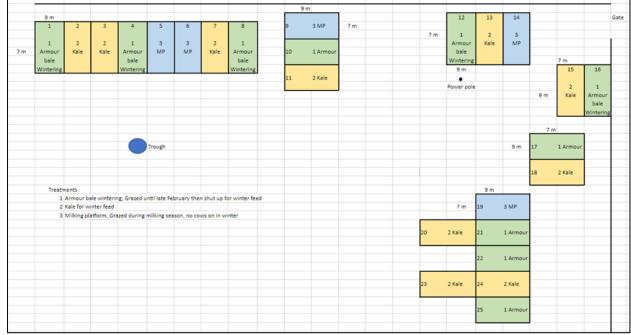
Bale grazing in northern Southland - experiences to date

Project objectives

Quantifying the effects of a bale grazing wintering approach on environmental, animal welfare and GHG outcomes

- 'soil armour' management practices

- 1) Soil and water quality (2021, 2022 and 2023)
- 2) Animal welfare (2022)
- 3) Nitrous oxide emissions (2022)



Approach

Well-drained soil

Ceramic cup soil solution samplers used to measure N losses in drainage

Two treatments:

Bale grazing v kale wintering

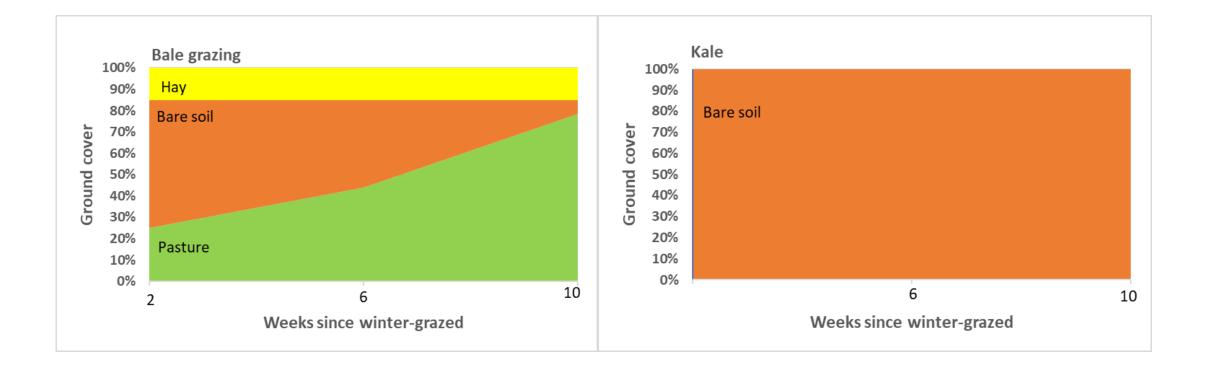
8 m²/cow/day

1.0 RSU/m²/d

Offered: 12.5 kg kale DM/cow/d 4.5 kg baleage "

16 m²/cow/day

0.5 RSU/m²/d


Offered: 5.5 kg pasture DM/cow/d 17.5 kg hay "

(RSU = Relative Stock Units)

Return of ground cover post winter grazing (2021)

Soil and plant conditions post winter grazing - bale grazing plots (2021)

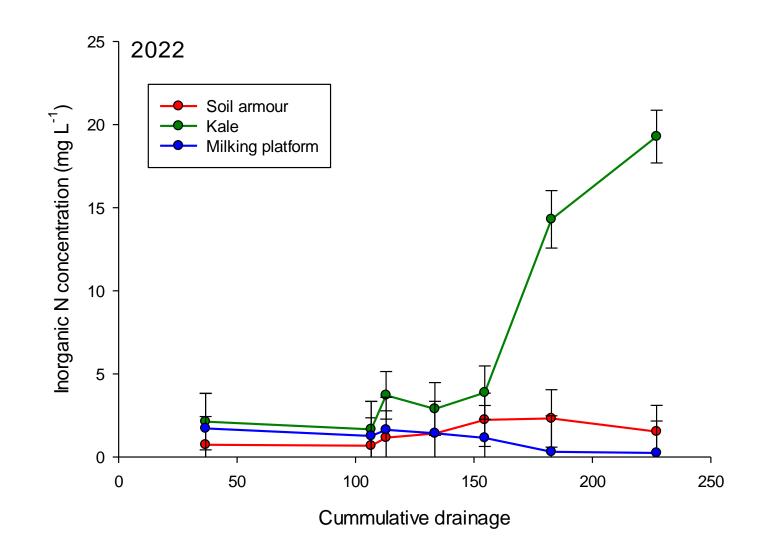
- Immediately after grazing on 17 June

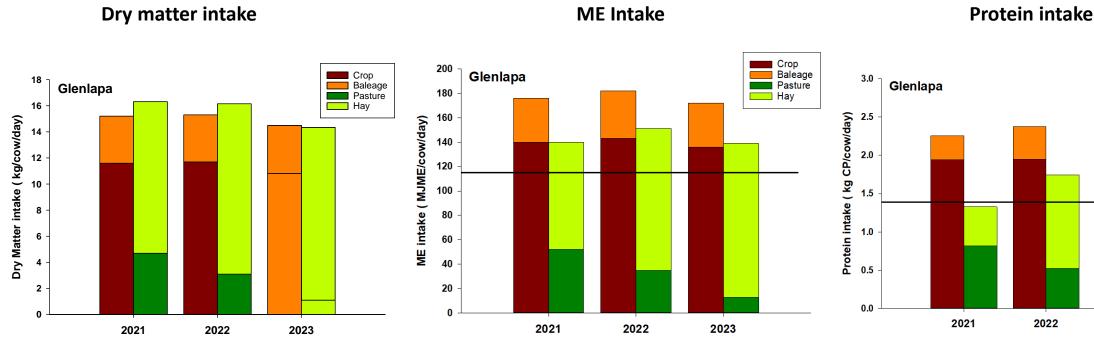
- 41% bare soil 1 month after grazing

<10% bare ground 2.5 months after grazing

Welfare key findings

- Bale grazed cows had greater cow comfort:
 - Spent more time lying (on day one) and in postures indicative of greater thermal comfort
 - Spent more time ruminating
 - Were warmer (skin temperature) and cleaner
- Lying behaviour varied with weather conditions
 - Crop cows more variable in their response to weather including rebound responses
- Long term physiological impacts?
 - Potential changes in energy mobilisation (NEFA), thermo-regulation (T4), health & immune function (RBC, WBC) (descriptive data only)




Results: N concentrations in drainage at Glenlapa

- Lower N concentrations in the Bale Grazing ("Soil Armour") treatment for all events in 2022.
 - N leaching loss approx. one quarter that estimated for kale treatment
 (per cow wintered)

Animal intakes

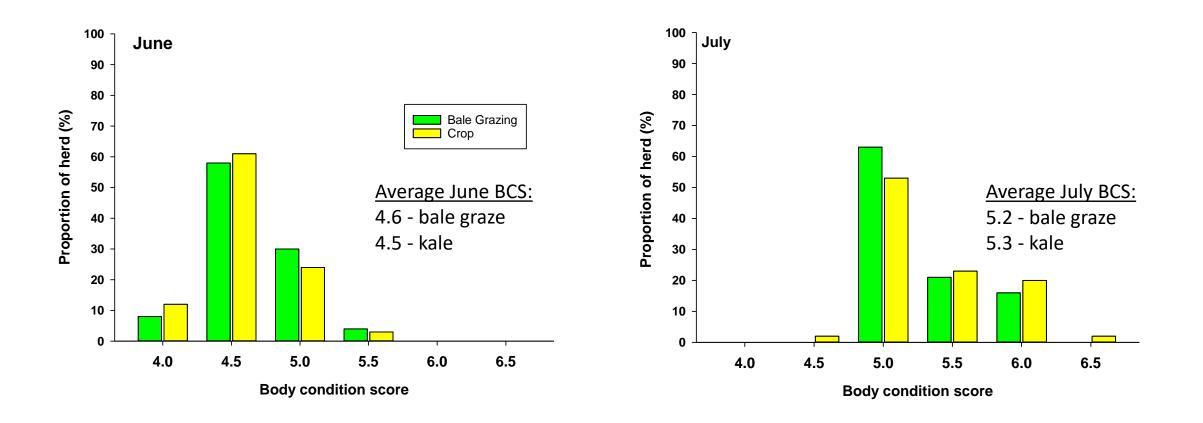
The line indicates the ME requirements for a 450 kg cow covering maintenance + pregnancy (8 weeks pre calving) + 0.5BCS gain.

The line indicates the CP intakes for a cow consuming 12 kg DM/day with a CP of 12%.

2022

2023

Crop


Hay

Baleage

Pasture

Effect of bale grazing on body condition score Glenlapa, 2023

Some key observations to date - bale grazing v kale wintering

	Kale	Bale grazing
October plant cover, kg DM/ha	minor weeds	~ 3,000
Plant N uptake by mid Oct, kg N/ha	minor	49
N leaching (2022), kg N/cow wintered	0.90	0.24 74%
Soil damage - surface roughness, % increase - VSA score	8.8 6.0	2.0 16.0
Soil loss risk - T/ha/yr - T/cow wintered	1.6 0.09	0.13 0.01
Nitrous oxide emissions, kg N/cow wintered	0.33	0.11 68%

Design ingredients that have probably provided benefits in the bale grazing treatment:

- 1. Lower grazing pressure (16 v 8 m²/cow/day)
- 2. More soil armour/strength provided by <u>established</u> pasture
- 3. Well-drained soil (and dry-ish winters @ 150 200 mm rainfall)
- 4. Reduced cow trafficking/milling due to

Loafing surface provided by residual hay

➤3-day breaks at a time?

Acknowledgements

- Freedom Acres farm team, including past members Megan and Jack Fattorini
- MPI's Sustainable Land Management and Climate Change (SLMACC) fund

Extra slides if needed

Data collection – plant, water, soil, climate, animal

- Plant: Annual yields and N contents; winter forage allocations, quality & N contents; winter feeding residuals.
- Water: drainage volumes; drainage N concentrations per event (~25 mm)
- Soil: % bare ground v vegetated; pug depth; surface roughness; macroporosity & bulk density^{*}; aggregate size distribution[#]; infiltration rate⁺; nitrous oxide emissions
- Climate: rainfall; soil and air temp
- > <u>Animal</u>: grazing pressure, RSUs $m^{-2}d^{-1}$; various welfare assessments

*measured in 2021; #measured in 2022; *measured in 2022 at Glenlapa site only; RSU = Relative Stock Unit

Bare ground estimates using drone footage Winter runoff paddocks (end Sept)

Bare ground estimates using drone footage Bale-grazed winter runoff paddocks (as at 1 Oct 2022)

	Northern Southland winter pastures n = 8	South Otago winter pastures n = 17	Southern Southland winter pastures n = 3
% bare ground	49	43	44
% green	42	43	39
% bale area	10	14	17